
Model-based Integration Testing of Enterprise Services

Sebastian Wieczorek,
Alin Stefanescu

SAP Research CEC Darmstadt,Germany
forename.surname@sap.com

Ina Schieferdecker
Fraunhofer Institute for Open Communication

Systems (FOKUS),Germany
ina.schieferdecker@fokus.fraunhofer.de

Abstract

The success of service-oriented architectures (SOA)
depends on faultless and seamless service integration.
Formal modeling of global communication protocols
between services enables a model-based integration
testing (MBIT) approach. In this paper we present an
MBIT approach based on SAP proprietary
choreography models called Message Choreography
Models (MCM). We explain how MBIT fits into the
SAP testing methodology for SOA and give some
insights into the experience we gained from the work.

1. Introduction

The goal of integration testing is to show that a
combination of different software components interact
correctly. Especially for applications whose
components are loosely coupled, as it clearly is the
case for SOA, tests of the communication and
interaction are as vital as the functional correctness of
the single communicating parts. To determine the
success of integration testing, specific coverage criteria
have to be applied. Local component test coverage
criteria like code coverage are unfortunately not
sufficient in determining whether two or more
components are able to operate with each other under
the agreed circumstances. Only the application of a
global test concept can provide that.

 Enterprise Resource Planning (ERP) software
integrates various organizational parts and functions
into one software system. Its heterogeneous and
distributed nature poses unique challenges to software
development and testing. Service-oriented systems are
regarded as a next evolutionary step to cope with the
ever growing complexity of ERP systems where
monolithic approaches are not applicable anymore.
SAP is a leading provider of ERP software. In SAP’s
approach to SOA, independent business components
exhibit enterprise services. They can be composed
individually to implement customized business

processes (see Figure 1). As service integration takes
place on a higher level of abstraction than component
development, complex service interactions need to be
defined in a structured way. Choreography languages
describe such interactions from a global point of view.

This experience paper presents a model-based
approach for integration testing of service
choreographies. The foundations of the approach have
been provided in previous papers: [6] describes the
details of the domain specific modeling language
MCM, [7] shows the test generation approach and
translations of MCM into executable UML with Java
annotations, [8] discusses the different coverage
criteria and their fault detection for integration testing,
and [9] presents challenges in the area of ERP test data
provision. In this paper we focus on the integration of
our approach into the SAP test strategy and the
experiences we gained.

The paper is structured as follows. Section 2
introduces MCM, which is the basis of our model-
based integration testing (MBIT) approach. Section 3
shortly describes the test generation and in Section 4
we explain how MBIT integrates with SAP’s testing
framework. Section 5 concludes with the lessons
learned.

2. Message Choreography Models

Choreography models play an important role in

SOA development and can provide a basis for ensuring
quality at several levels. According to the W3C Web
Service Glossary, “a choreography defines the
sequence and conditions under which multiple
cooperating independent agents exchange messages in
order to perform a task to achieve a goal state”. More
precisely, a choreography model describes the
interaction protocol from the perspective of a global
observer between a set of loosely coupled components
communicating over message channels.

2009 Testing: Academic and Industrial Conference - Practice and Research Techniques

978-0-7695-3820-4/09 $26.00 © 2009 IEEE

DOI 10.1109/TAICPART.2009.11

56

Figure 1. Service composition via an enterprise

repository

In previous work [6], we defined precise

requirements on choreography modeling languages that
supports not only software design activities but also the
testing process. State of the art choreography
languages such as WS-CDL [4] or BPMN [2] cannot
be directly utilized for model-based test design, mainly
due to a high abstraction level, imprecise semantics,
lack of a formal foundation, assumption of ideal
channels, lack of termination symbols, etc. In [7] we
therefore introduce a choreography modeling language
called Message Choreography Modeling (MCM) that
provides the missing elements mentioned before.
Further we implemented an MCM editor with
verification and testing plugins (see Figure 2).

MCM complements the structural information of
the communicating components (e.g. service interface
descriptions and message types) with information on
the message exchange between them. MCM consists of
different model types each defining different aspects of
service composition:
Global Choreography Model. The global choreogra-
phy model (GCM) specifies a high-level view of the
conversation between service components. Its purpose
is to define every allowed sequence of message
receptions.
Local Partner Model. The local partner models
(LPMs) specify the communication-relevant behavior
for exactly one participating service component. Due
to the design process of MCM, each LPM is a
structural copy of the GCM with extra constraints on
some of the local transitions, usually leading to the
affected transitions being deactivated.

Channel Model. The channel model (CM) describes
the characteristics of the communication channel on
which messages are exchanged between the service
components. It determines for example whether
messages sent by one component preserve their order
during transmission.

Model-based testing (MBT) approaches are able to
effectively support automatic test generation from
component interaction models as well as to execute
and evaluate their success. Because MCM was
designed with testing and formal verification in mind,
it is highly suited for test automation techniques like
MBIT. Nevertheless manual work cannot be eliminated
totally making it necessary to restrict the size of the
generated test suite to a minimum.

Figure 2. Screenshot of the MCM editor

3. Test Generation

Using MBT for service integration promises to
reduce the manual effort by automatically generating
minimal sets of test cases for a desired coverage of the
choreography model. In [8] we discussed possible
coverage criteria that can be used to drive service
integration testing and how to choose them accordingly
depending on effort and fault assumptions.

As described in [7] we decided to follow a three-
step approach for test generation, which takes into
account the MCM characteristics:
Step 1: A test generator is used to generate a set of
globally observable message sequences according to a
given model coverage of the GCM (e.g., state
coverage, transition coverage, all-transition pairs
coverage). FSM-based approaches can be used if none
of the annotated constraints relates the current
interaction to previous behavior. Otherwise (e.g. when
a transition is dependent on a global counter variable)
approaches like constraint solving, model checking,

57

theorem proving, or symbolic execution have to be
applied. We have already started evaluating such
techniques, but we will not report here on the results.
Step 2: The local event sequences corresponding to the
test cases are computed. This is necessary because the
GCM specifies the order of receive events only
(receive semantics is suitable to uncover message
racing). Therefore the receive sequences have to be
enhanced by their corresponding send events taking the
LPMs and channel model into account. Fortunately this
can be done automatically without major issues.
Further test oracles can be automatically inserted into
test cases using information about how LPM states are
related to the concrete component states as this
information is annotated to the LPM states.
Step 3: The generated abstract test cases are translated
into executable test suites. This step is semi-automatic.
We can automatically generate the concrete test steps
of each test case as well as state checks on the local
components. However, as the actions that invoke
message sending are not fully modeled in MCM, this
information as well as the test data has to be added
manually to the test cases.

Among different available coverage criteria we
investigated transition coverage of the GCM. Our
motivation was that transition coverage promises to
uncover a significant amount of integration faults with
relatively small effort. For example in the MBIT
approach of [1], transition coverage of a global
communication model is able to detect about 90% of
integration related faults. In order to detect 95% of
these faults combined transition coverage of the local
behavior of the involved components has to be applied.
In this case the test suite is increased 25 times. 100%
fault detection is realized by a test suite that covers all
local path combinations but test effort is again doubled
compared to the combined transition coverage. It has to
be said, that in the case of more complex behavior
models i.e. incorporating loops or more than three
states per component, the increase in effort for each
coverage criteria would have been much higher.

When applying MCM-driven integration testing
only the results for the global transition coverage are
applicable. LPMs are abstracting from the local
behavior by leaving out communication irrelevant
transitions thus eliminating the possibility of checking
that each local state is implemented compliant to the
abstract communication state it is associated with. In
fact most of the time transition coverage of the GCM
also results in transition coverage of the involved
LPMs. The better fault detection capability of pair-
transition coverage in integration testing is due to
better coverage of local states. The behavior of
enterprise service components, incorporating various

cycles and hundreds of states makes it difficult to test
each possible local state combination in a service
composition anyway. However if unit component tests
are already checking the behavioral conformance of
each local state to the associated abstract state in the
LPM, then pair-transition coverage does not lead to
better results than transition coverage.

4. Embedding MBIT into SAP’s current
test framework

According to the nomenclature of [5], chapter 8, we

use a mixed approach for the test concretization phase,
described in Step 3 of the previous section, which is a
combination of the test adaptation and test
transformation modes.

More precisely, we implemented a transformation
from the abstract test cases to an internal SAP test
language for integration testing. This language follows
the keyword-driven testing principles1 (see [5], chapter
2), i.e., it builds upon SAP’s eCATT test script
language [3] and was designed to address the
requirements of integration testing at a higher level of
abstraction. This test language contains constructs that
can create and modify local business objects, can
trigger the sending of messages between the business
components via the available enterprise services and
can check the values of the internal local states against
the expected values in order to decide the failure or
success of a test.

Test data used for the test runs on the system under
test (SUT) is usually very complex and has to be
compliant with existing master data and the actual
system configurations. Automatic test data generation
would demand test engineers to specify rather difficult
test data models in a different modeling environment.
Therefore we currently leverage the experience of the
testers by manually providing test data.

To minimize the manual effort for the test
concretization, we transform generated abstract test
cases in a modular way. Each test step (i.e. local state
checks and message triggering) is transformed in a
separate script while for each test case a master script
is generated that calls the test step scripts in the
appropriate order. In this way we enforce a high reuse

1 Keyword-driven testing (or action-word testing) uses action

keywords in the test cases, in addition to data. Each action
keyword corresponds to a fragment of a test script (the
adapter code), which allows the test execution tool to
translate a sequence of keywords and data values into
executable tests [5]. Keyword-driven test cases are useful
because they can fill the gap between the abstract test cases
generated by the MBT engine and the the executable lower
level test scripts.

58

that results in less effort and enables parallelization of
the manual work, which is a big advantage for
integration testing with different development areas
concerned.

The test execution environment is provided by the
SAP Test Workbench and SAP Solution Manager.
These frameworks support the whole testing process
starting from the test planning, test execution until the
final test reporting. The main steps of the supported
test process are shortly described.

 First, the system integrators decide about test goals
for the involved communicating business components
and consequently test coordinators are drafting a test
plan that satisfies these goals. Afterwards test case
descriptions are generated, grouped into test suites, and
filled into the test plan. At this point it is also decided
which of the tests are carried out manually and which
are automated. The automated tests are usually
implemented in eCATT [3]. When model-based testing
techniques like MBIT are used, deciding on test goals
in terms of model coverage is the only manual work
that has to be carried out up to this stage (as described
in Section 3).

Afterwards, the necessary test data is made
available. This is not a trivial task especially for
distributed and heterogeneous systems, where the test
metadata and database contents must be consistent.
SAP provides tools like the Test Data Migration Server
(TDMS) that is able to derive consistent reference data
from existing systems. It is also quite common that
reference test data is provided by customers or internal
departments as additional information to the
requirement specification. All these data samples are
available so that the testers are able to choose the
appropriate input for each test case.

The test execution is controlled by the Test
Workbench, where test plans are executed
automatically and periodically in case of regression
tests. The results of the test runs are centrally reported
including different coverage criteria based on source
code, model elements, or requirements.

Figure 3. Service integration testing implemented

using SAP’s eCATT framework

Figure 3 shows how eCATT automates the
integration test execution, by having different test
scripts calling the involved enterprise services. The
results of one script are transferred to the next script
using exporting and importing functions. MBIT
supports this approach by automatically generating the
sequences of scripts together with their interfaces.

5. Lessons Learned

The pain points usually identified by ERP
customers during integration test automation are: (a)
creation of automated test cases is time consuming and
expensive to maintain via skilled test specialists, (b)
automated test cases get damaged by change events
and need time consuming repair by test specialists, and
(c) creation of appropriate test data for automated test
cases is difficult. MBIT can certainly help with the
points (a) and (b) with an upfront investment in
modeling of service composition. In theory, the
benefits of MBIT are: faster test design, higher test
quality, better test coverage, easier test maintenance,
and more test re-use. To realize these advantages in
practice, several difficult problems have to be solved in
each of the main MBIT steps. Our experience when
introducing MBIT in an industrial setting is
synthesized below.
Modeling of the SUT: Design decisions like the
abstraction level of the model or the used patterns
determine the quality of the test suite significantly.
Modelers therefore must have an understanding of the
test generation process in order to anticipate the
consequences of their design decisions. A (possibly
automatic) decision support, e.g. based on anti-patterns
might be helpful.
Abstract test generation: Determining the right model
coverage for the test generation should be based on
various aspects like the error assumptions, model
granularity and resulting test effort. Again, training of
testers and decision support has to be provided. We
further found that generating test suites consisting of
test cases with a relatively small number of test steps
have been preferred by testers over test suites where
the overall number of test cases is lower. Shorter tests
cases have the advantage that they are much easier to
maintain and to debug in case of an error.
Test concretization: As mentioned in [5], this step can
take up to half of the whole model-based testing effort.
We note ourselves that this is an important step in the
whole MBIT chain, which has been addressed little in
the literature. Especially the test data provision is
lacking tools that are able to cope with complex data
types, even though automatic data picking from
existing sources seems to be a promising approach.

59

Test Execution: An advanced test execution and test
management framework, preferably including
keyword-driven technologies, must be available.
Fortunately this is the case at SAP. Moreover, due to
complex test data involved, the test cases are not
executed on the fly but after the test generation, i.e.
offline MBT (see also [5]).
Test analysis: To assign verdicts to generated tests is a
hard and error prone task. To tackle this, we linked the
global states of MCM to their corresponding local
states of the components such that we can generate test
oracles automatically.
User acceptance and dissemination: We tried hard to
come up with a tool that satisfies the users in
functionality and ease of use. Therefore we defined a
domain specific language MCM based on internal
requirements and sharing some of the meta-model
elements with existing SAP proprietary models, such
that we can leverage the previous experience of the
users. In our tool we incorporated information from
other development models e.g. local components and
offer it in different forms (e.g. auto-completion) to ease
the navigation through the message data types and
local business objects. We kept the users in the loop
during our tool development, constantly giving internal
demos for quick feedback. Currently we are piloting
our approach with a group of 20 integration experts,
developers, and testers from different areas for tool
fine tuning before the release it on a larger scale. Most
of the pilot users were comfortable with the graphical
modeling and its underlying semantics, but sometimes
had problems with first-order logic textual guards on
the transitions. In the presence of an MCM expert, the
users were able to draft a first MCM for their
choreography within 2 hours, which can be used to
automatically generate test suites containing 7 to 10
test cases, each having 4 to 8 steps. Given the fact that
a complex application could sometime have up to a
hundred peer-to-peer choreographies, one can envisage
the saving potential of the MBIT.
Future work: In our current setting, service dynamicity
is not addressed because the set of communication
services is not changed at runtime using e.g. service
discovery. Current enterprise software, once set up, is
seldom reconfigured in respect to ad-hoc component
integration at runtime and hence dynamic binding is
not common in business critical processes. However it
would be interesting to see if our approach can be
adapted to the case of dynamic enterprise service
compositions. Moreover, we will concentrate our
future work on ways to automate the test data
provision.

Acknowledgments. This work was partially supported
by the EC-funded projects Modelplex2 and Deploy3
(grants no. 034081 and 214158).

6. References

[1] S. Ali, L. Briand, M. Jaffar-Ur Rehman, H. Asghar, M.
Z. Iqbal, and A. Nadeem, “A State-Based Approach to
Integration Testing Based on UML Models”, Information &
Software Technology, 49 (11–12), Elsevier, 2007, pp. 1087–
1106.

[2] Business Process Modeling Notation (BPMN)
Specification, Final Adopted Specification, Technical report,
Object Management Group (OMG), Online at:
http://www.bpmn.org

[3] M. Helfen, M. Lauer, and H. M. Trautwein, Testing SAP
solutions, SAP Press, 2007.

[4] N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon,
“Web Services Choreography Description Language Version
1.0. W3C Candidate Recommendation”, Technical report,
2005.

[5] M. Utting and B. Legeard, Practical model-based testing,
a tools approach. Morgan Kaufmann Publ., 2007.

[6] S. Wieczorek, A. Roth, A. Stefanescu, and A. Charfi,
“Precise Steps for Choreography Modeling for SOA
Validation and Verification”, Proc. of Int. Symposium on
Service-Oriented Software Engineering (SOSE'08), IEEE
Computer Society, 2008.

[7] A. Stefanescu, S. Wieczorek, and A. Kirshin,
“MBT4Chor: A model-based testing approach for service
choreographies”, Proc. of European Conf. on Model-Driven
Architecture (ECMDA’09), LNCS 5562, Springer, 2009, pp.
313–324.

[8] S. Wieczorek, A. Stefanescu, and J. Großmann,
“Enabling model-based testing for SOA integration testing”,
Proc. of Workshop on Model-based testing in practice
(MOTIP’08), Fraunhofer IRB Verlag, 2008, pp. 73–82.

[9] S. Wieczorek, A. Stefanescu, and I. Schieferdecker, “Test
Data Provision for ERP Systems”, Proc. of Int. Conf. on
Software Testing, Verification and Validation (ICST’08),
IEEE Computer Society, 2008, pp. 396–403.

2 http://www.modelplex-ist.org
3 http://www.deploy-project.eu

60

